SR Media Player Project Outline – Dev cycle

11/7/2007

1. Consider Copyright licensing

2. Requirements Analysis

· Determine user and system requirements for the application.

Deliverables: an application requirements document.

· Create GUI Prototype

· use Microsoft C# Express IDE

Purpose: a “throwaway” application to demonstrate the intended

functionality and usage (both the GUI and VUI), provide a

product to critique and get feedback so the requirements can be

further refined as needed.

Deliverable: an executable Windows Form application demonstrating the main features and how it satisfies the user requirements.

· Create a voice interface prototype:

- using SUEDE http://guir.berkeley.edu/projects/suede/
(NOTE: It turned out that SUEDE is not really suitable for modeling voice commands and is more appropriate for modeling interactive telephony applications. Nevertheless, it is included for what it is worth. Plan to put more of the voice interface into the windows form prototype.)

Deliverable: an archive of all the files/directories needed by the suede tool to run the model.

3. Project Site for all documents

· site content (http://srmediaplayer.sourceforge.net)

· the introduction to the project.

· Application Requirements (broad overview user requirements)

· screenshots of the application

· prototypes available

· a page for the development team (list of members and what
title they hold in the project.)

- links to useful sites.

- the outline for the development process (this document)

· News section – use this for turning points in the project

- e.g. new members, departing members, etc.

· Forums

 1. Help forum

 2. Open Discussion

 3. Developer Discussion

· Setup SVN repository

 1. Component repository.

 - Each component must be stored separately for parallel development, with each version including, its own documentation, testing, config files, msbuild file, etc.

· Sourceforge File Release System (finished product download)

· Trackers (already enabled; new users just have to become familiar)

1. Bug tracker

2. Feature requests

3. Patches

4. Support requests

· Mail list

- new users automatically added to mail list.

4. Component Architecture

· the application user/system requirements component diagram

· sequence diagrams for each use

· specification document

· development of requirement documentation for each component.

· any other creative diagrams or documents that can be used to illustrate the interdependencies of the components (e.g. dependency matrix, database schema, entity relation diagrams).

· create a file structure for each component and store on the repository. Each component will contain a basic requirements document, source code folder, test code folder, build file for that component.

· create a forum in the developer forums on sourceforge for each planned component.

5. Develop components

· Design and develop a component.

1. A developer signs up for a component on the task list. Please be aware that this is a very important step, so as to avoid conflicts in revising the source code. Try to keep all communication for the component in the developer forum for that component.

2. The developer checks that component out of the repository and develops the component.

deliverables: use case diagrams, class diagrams, sequence diagrams,
and any other diagrams useful to conveying the designer's intentions,
the ArgoUML model with ample documentation in the documentation
tab, the component specification document, the source code for the
code and (hopefully) successful unit tests. Include a demo as a unit test
of the component.

· Test

· A Tester signs up for a component to test in the task list.

· Integration Tests

· Stress tests

· Failure tests

· recommit to repository with completed tests and evaluation. Please complete an evaluation document to indicate the readiness to be included in the overall assembly and ways for improvement.

· Create a task in the task list for the necessary project improvements. This step should be done by the project manager based on the evaluation performed by the tester

Note: The preference is that a component be tested by different developers. (The developer that writes the source code will of course still write the unit tests.) Obviously, this may or may not be convenient. If the tester is the developer, we must try to maintain a sense for the separation of concerns here.

Deliverables: source code for the tests, results of the tests, suggestions as to how to make the component better, an evaluation of the component readiness to be incorporated into the application (e.g. are the interfaces to the component implemented with certainty?). Alterations in the code are NOT to be made at this stage.

· If the component is deemed ready, it can be used in the assembly phase. Otherwise, the component must be checked out by a developer and redesigned/redeveloped based on the directives in the task list.

Note: The aim is to let the task list on sourceforge govern which
developer checks out which component at what time.

6. Assembly

· Obviously, the course of this stage will depend what and when certain components are ready. Basically, the idea here is to assemble the components into a usable application

· Deliverables include:

1. deployment diagram

2. “glue code” such as event handlers in the components.

3. An application hosting framework to run the components.

4. instructions on how to deploy, or even better, an ready installer to install the application.

7. Assembly Testing

a. Test the application

b. Fix obvious bugs via bug tracking system.

c. Make the application available as a download.

 12. Log bugs in application.

· Encourage users to log bug reports on bug tracker.

13. Bug tracking

· locate the source of the bugs

· If bug can be fixed within the assembly, assign a task to create an assembly patch or possibly a new assembly (go back to 6)

· If bug is identified to be from a component, assign the task to the component for a redesign (go back to step 5)

· Make sure to make any documentation changes in xml documentation in source code or the component specifications.

Note: Please do not fix components or assembly level problems based solely on the bug tracker, but remember to coordinate all fixes in the task list.

Tools used

· ArgoUML UML Model Tool

http://argouml.tigris.org/

· NUnit testing framework

http://www.nunit.org/
· Microsoft C# Express IDE

http://www.microsoft.com/express/vcsharp/

· MSBuild process

- just so long as msbuild is used, it should be alright to use any complementary IDE such as sharpdevelop or the basic command line utilities.

Code Repository – SVN

· Sourceforge Tracking facilities

Positions Talent

· Web site

php/MySQL talent to enhance the web site and take advantage of more of the features in sourceforge – e.g. project demo page, ongoing documentation, log of current happenings, etc. Basically, someone to maintain the web site to facilitate communication between developers, present an introduction to the project, keep current and potential users informed of changes in the product, and engage in project evangelization.

· Software Testers

1. developers to create and run functional tests, stress tests and failure tests to test a component to ensure it meets the requirements. Talents: C#, nunit, svn.

· Designers/developers

1. design and develop the components to meet requirements as laid out in a Requirement specification for a component. Talents: UML, OOP, C#, .net framework 2.0, nunit and unit testing, svn, Microsoft Speech SDK

· Documentation

1. create user manual documentation.

· Graphics and Design

1. Graphic Artist – to create custom icons, widgets, designs, logo's for the product GUI as well as web site.

